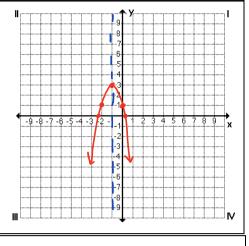
Unit 3 Stations Answers

10 GRAPHING QUADRATIC FUNCTIONS

axis of symmetry: $\chi = -1$ vertex: (-1,3)


y-intercept: (0,1)

x-intercept(s): $- \mid \pm \frac{1}{2} \mid$

≈ 0.2,-2.2

 \min/\max (-1,3) domain: \mathbb{R} range: $U \leq 3$

end behavior: $O(S \times \rightarrow + \bowtie, f(x) \rightarrow - \bowtie O(S \times \rightarrow - \bowtie, f(x) \rightarrow - \bowtie, f(x) \rightarrow - \bowtie O(S \times \rightarrow - \bowtie, f(x) \rightarrow - \bowtie, f(x) \rightarrow - \bowtie O(S \times \rightarrow - \bowtie, f(x) \rightarrow - \bowtie, f$

② SOLVING QUADRATICS

X=10±512

X= 1±152

3 SOLVING QUADRATICS PART 2

X= -3 = 1.1

X= 5 ,-5

4 SOLVING QUADRATICS PART 3

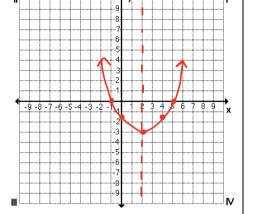
X=-3±=i

X=7,-5

⑤ COMPLEX NUMBERS

17-28 L

-12+3i -<u>5+13i</u>


10 - 2i

© GRAPHING PART 2

axis of symmetry: $\chi = 2$ vertex: (2, -3)

y-intercept: $-\begin{vmatrix} \frac{2}{5} \end{vmatrix}$

x-intercept(s): 5, – |

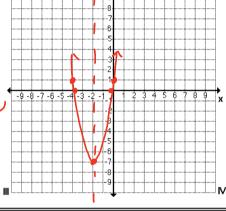
(min) max: (2,-3) domain: \mathbb{R} range: $y \ge -3$

end behavior: $0/5 \times 3 + 10$, f(x) = 3 + 10

015 X -> - w, f(x) -> + w

© GRAPHING PART 3

axis of symmetry: $\chi = -2$ vertex: (-2, -1)


y-intercept: (O)

x-intercept(s): $-\frac{4 \pm \sqrt{14}}{2} \approx -0.1$ -3.9

(-2,-1) domain: \mathbb{R} range: $U \ge -7$

end behavior: $\alpha \leq x \rightarrow + \omega$, $f(x) \rightarrow + \infty$

015 X - - 00, f(x) - - 00

® MODELING DROPPED AND LAUNCHED OBJECTS

0 = -16 + 2 + 500t≈ 5.6 seconds $10 = -10t^2 + 32t + 2100$ += 1± √17 ≈ 5.1 Sec

9 FIND THE ERROR

mistake that was made: The denominator

in step 2 should be 100-412

correct answer:

<u>25-6i</u>

mistake that was made: The Square root 0f 36 is ±6

correct answer:

4 and -8